
36 JOURNAL ON SELECTED TOPICS IN NANO ELECTRONICS AND COMPUTING, VOL. 2, NO. 2, DECEMBER 2014

Evaluating the Stability
of Supercomputer Workload Model

Alexander Rumyantsev

Abstract—A multi-server model with simultaneous service and
concurrent server release is considered. A stability condition
of the model (under exponential assumptions) is presented. A
method for fast evaluation of the stability criterion is obtained.
The condition allows to verify the stability of a supercomputer
at design time, provided that the governing sequence of tasks
is known beforehand. The hpcwld package that provides R [1]
functions for the workload (unfinished work) evaluation as well
as stability condition evaluation is discussed. The package can
be obtained via Comprehensive R Archive Network [2]. The
results may be of practical interest to the designers and owners
of supercomputers.

Index Terms—Supercomputer workload, stochastic modeling,
stability, dimension reduction, CRAN, R.

I. INTRODUCTION

H IGH performance clusters (HPC) are powerful tools
for the speedup of computations in the tasks requiring

heavy calculations (e. g. the Grand Challenges [3]). However,
development and improvement of an HPC is rather expensive.
Building a very powerful system, which highly overlaps the
users need for computational power, may lead to waste of the
resources. At the same time, a system which lacks computa-
tional power, may lead to loss of stability, which in practice
means the growth of delays in the queue and unsatisfied users.
When performance is an issue and the delays have a trend to
grow, a long term consequence will be increasing migration
of users to another, more satisfactory HPC site and (in case
of commercial use) income decrease. The compromise may
be successfully reached by performing a stability analysis of
HPC at the design time.

Models of HPC workload, as well as simulation of HPC pro-
cessing with workload traces, are widely used for the design
and deployment of scheduling software [4]–[11]. However, the
majority of aforementioned papers consider models that allow
mostly numerical evaluation, and do not suit to perform the
stability analysis.

Multi-server systems have been intensively studied in lit-
erature, for references see e. g. the reviews [12]–[19]. In
such models customers are being served by a number of
(potentially different) servers. Apart from classical multi-
server models, in which each customer is served by only one
of the servers, a number of works are dedicated to the analysis

Manuscript received December 05, 2014; accepted December 10, 2014.
Date of online publication: December 28, 2014.

The work is supported by grant of the Russian Foundation for Basic
Research (projects 14-07-31007, 13-07-98801).

A. Rumyantsev is with the Institute of Applied Mathematical Research of
Karelian Research Centre, Russian Academy of Sciences, 11, Pushkinskaya
str., 185910 Petrozavodsk, Karelia, Russia; e-mail:ar0@krc.karelia.ru.

of a particular subclass of multi-server systems with the so-
called simultaneous service (see [20]–[27]). The distinctive
feature of these models is that a (random) number of servers
are simultaneously occupied by one customer and may become
free either simultaneously (the so-called concurrent service
systems [28]), or independently (the independent service sys-
tems [28]). The former of these two system models captures
the essential feature of an HPC, where each customer (or the
so-called rigid job [27]) may occupy at once a number of
CPUs, and release them simultaneously upon the completion
of its service. Application of the multi-server models with
simultaneous service to the analysis of real HPC systems is
straightforward. We stress that such models may not in general
be reduced to classical multiserver models.

A multi-server concurrent service model for the work-
load process (unfinished work on each server) was presented
in [29]. A modification of the so-called Kiefer–Wolfowitz re-
cursion [30], [31] was performend in such a way to incorporate
the simultaneous server occupation/release property. The main
difficulty in analysis of supercomputer workload model is that
the discipline is not work-conserving, which means that there
might be available processors at the same time with non-
empty queue [20], [21]. This greatly increases the complexity
of stability analysis of the model, as the workload turns out to
be non work-conserving. However, the model in [29] due to
its relative simplicity is analytically tractable, and the stability
condition for the model has been represented in an explicit
form by means of matrix-analytic method [32].

The considered model was implemented as an extension
package hpcwld for R statistical software [1]. The choice of
R as a target platform was motivated by the potential power
of statictical methods available as extensions that allow to per-
form a rich statistical study over the results of simulation. The
presented package contains function to evaluate the stability
condition for the concurrent service workload model by means
of characteristics of the input flow of customers.

This work is organized as follows. In section II, the stability
of a concurrent service model based on the modified Kiefer–
Wolfowitz recursion is discussed. Next, computational issues
are summarized. The functionality of the hpcwld package for
the R system [1] is briefly described. To conclude, we add a
discussion about the points for future work.

II. STABILITY OF AN HPC WORKLOAD MODEL

Consider an open system with s identical servers working
in parallel. Customers arrive at random epochs ti, i > 1 (with
exponentially distributed interarrival times Ti := ti+1−ti > 0)

RUMYANTSEV: EVALUATING THE STABILITY OF SUPERCOMPUTER WORKLOAD MODEL 37

into a single queue (First Come First Served queueing disci-
pline). A customer i needs to occupy a (random) number Ni

of servers for (indentical, exponentially distributed) time Si

simultaneously. In case of insufficient resources, the customer
i has to spend time Di > 0 in the queue. Define a customer
i to be of class-k if Ni = k. The required number of servers
for each customer has a discrete distribution

pk := P{N = k}, k = 1, . . . , s.

(The indices are omitted for generic elements of a stochastic
sequence.)

The workload vector of the system under consideration
follows the modification of a Kiefer–Wolfowitz recursion:

Wi+1 = R
(Ni components︷ ︸︸ ︷
Wi,Ni + Si − Ti, . . . ,Wi,Ni + Si − Ti,
Wi,Ni+1 − Ti, . . . ,Wi,s − Ti

)+
, (1)

where Wi is the vector of unfinished work on each of s
processors placed in the ascending order (as seen by customer
i at the arrival epoch ti), R(·) places components of a vector
in an ascending order and (·)+ = max(0, ·) componentwise.
The delay of i-th customer is then defined as follows:

Di :=Wi,Ni
, i > 1. (2)

Note that the driving sequence {Ti, Si, Ni} for i > 0 may be
extracted from the logfile of the queue management software
of an HPC (a number of available workload traces may be
found in [33]). Distribution sampling may be also used in
case the characteristics of the input flow are known [34].

The necessary and sufficient stability condition for the
considered system (where stability means that the delay Di

converges weakly to a stationary delay D as i → ∞) is as
follows [32]

ρ := λCES < 1, (3)

where λ := 1/ET is the arrival intensity,

C :=
∑

m∈M

∏s
i=1 pmi

max{i :
∑i

j=1mj 6 s}
, (4)

and M = {1, . . . , s}s. The complete proof of this stability
result is to appear in a separate paper. Intuitively, the setM is
a phase space of the system, where a “phase” is treated as the
vector of classes of the first s customers in the system (in the
order of arrival) present at some instance t. In this regard, the
constant C may be treated as the intensity of clients processing
simultaneously for a given phase spaceM. This means that sC
may be intuitively treated as mean number of servers occupied
by each customer, given phase space M, and the criterion (3)
may be treated as λE(N |M)ES < s, where E(·|M) is the
mean taken conditionally on M . However, a direct use of the
criterion (3) is limited by the need of performing enumeration
over the set M of capacity ss to calculate (4). This means
that evaluation of C for s > 10 is computationally limited.

A. Dimension reduction method

Transform the set M into a set N as follows: for each
m = (m1, . . . ,ms) ∈ M define a vector function n(m) =

(n
(m)
1 , . . . , n

(m)
s) ∈ N by the rule

n
(m)
i = #{mj = i, 1 6 j 6 ||m||}, 1 6 i 6 s, (5)

where ||m|| := max{i :
∑i

j=1mj 6 s}. Note that n(m) is
a vector representation of an integer partition of the value∑||m||

i=1 mi =
∑s

j=1 jn
(m)
j by the set {i 6 s : n

(m)
i > 0}.

It is readily seen, that the transform n(m) : M → N is a
surjection, and N is the set of integer partitions of the numbers
1, . . . , s. Denote Nk the set of integer partitions of k 6 s.
Thus, N =

⋃s
k=1Nk.

Fix n̂ ∈ Nk. Note that n̂ is an integer partition of k.
Then define a subset M(n̂) := {m ∈ M : n(m) = n̂}. By
definition (5) for m ∈M(n̂) the following holds:

||m|| =
s∑

i=1

n̂i. (6)

Moreover,
||m||∏
i=1

pmi
=

s∏
i=1

pn̂i
i , m ∈M(n̂).

Thus, by definition (5), forM(n̂) the values (m1, . . . ,m||m||)
are a permutation of a multiset {i 6 s : n̂i > 0} with
multiplicities ni, i > 0. The number of such permutations
equals

(
∑s

i=1 n̂i)!∏s
i=1 n̂i!

. (7)

It remains to note that one has m||m||+1 > s−k+1, whereas
m||m||+i, i > 1 may be arbitrary, where m ∈ M(n̂). This
allows to deduce∑

m∈M(n̂)

s∏
i=||m||+1

pmi =

s∑
i=s−k+1

pi
∑

m∈M(n̂)

s∏
i=||m||+2

pmi

=

s∑
i=s−k+1

pi.

Then, recalling (7), get∑
m∈M(n̂)

∏s
i=1 pmi

||m||
=

(
∑s

i=1 n̂i)!∏s
i=1 n̂i!

s∏
i=1

pni
i

s∑
j=s−k+1

pj . (8)

With (8), recalling (6), from (4) deduce

C =

s∑
k=1

∑
n∈Nk

(
∑s

i=1 n̂i − 1)!∏s
i=1 n̂i!

s∏
i=1

pni
i

s∑
j=s−k+1

pj . (9)

Note that the capacity of the set N of integer partitions
is asymptotically s−1 exp(

√
s) [35], which allows one to

perform computation of the value C using (9) for s = O(103).
Intuitively, this transformation of the set M to N relies on
the observation that for given n̂ the phases that transform to
n̂ are in some sense similar. The first ||m|| customers (that
are actually served) are the same up to sample, the customer
||m|| + 1 can be only of a limited subset of classes, and the
options for customers ||m||+2, . . . , s together are exhaustive

38 JOURNAL ON SELECTED TOPICS IN NANO ELECTRONICS AND COMPUTING, VOL. 2, NO. 2, DECEMBER 2014

events. This allows one to sufficiently reduce the complexity
of the calculations required to evaluate the stability constant
C.

Moreover, as the summation is done over all the distinct sets
of partitions of integers 1, . . . , s, the algorithms of parallel
partition generation may be applied (see [36], [37]). This
allows to further extend the upper bound on s. Moreover,
consider also the following approximation of C using Monte-
Carlo simulation:

C ≈ 1

|M′|
∑

m∈M′

1

||m||
, (10)

where M′ ⊆M is a random subset and |M′| is the capacity
of the set M′.

B. The hpcwld package

The hpcwld package for HPC model workload evaluation
can be obtained via CRAN [2] for R version 2.15.0 or higher.
The package includes documentation with usage examples as
well as sample dataset. The latest development version can be
obtained via R-Forge [38]. All the functions are implemented
in R. The package allows evaluation of the workload recur-
sion (1) for given driving sequences {Ti, Ni, Si} (the Wld
function). The aforementioned sequences may be imported
from a so-called standart workload format file, a number of
such files may be obtained via the workload archive [33]. The
corresponding import and export functions are included in the
package (functions FromSWF and ToSWF). The function for
evaluation of stability constant C using equation (9) as well
as Monte-Carlo version (10) are implemented in the package
(function StabC).

III. DISCUSSION

In this paper we presented a method for evaluation of the
stability criterion for an HPC workload model, that belongs to
class of simultaneous concurrent service multi-server models.
The condition allows to verify the stability of an HPC at design
time, provided that the governing sequence of tasks is known
beforehand.

One of the drawbacks of the model (1) is the assumption
of the FCFS service discipline, which is not so oftenly used
in practice [34]. Nevertheless, the model is still useful as an
estimation of a real system. Moreover, one may easily see
that in case of no difference in priorities and deadlines of
the Backfill discipline, the customers are served according
to FCFS discipline. Note also that the stability criterion has
been strictly proved only in exponential case. However, we
conjecture that the criterion is true also in case of a general
service time distribution.

ACKNOWLEDGMENT

Author thanks Dr. Evsey V. Morozov for valuable com-
ments.

REFERENCES

[1] R Core Team, “R: A Language and Environment for Statistical
Computing,” 2014. [Online]. Available: http://www.r-project.org/

[2] CRAN team, “The Comprehensive R Archive Network,” 2014. [Online].
Available: http://cran.r-project.org/

[3] Wikimedia Foundation, “Grand Challenges - Wikipedia,
the free encyclopedia,” 2014. [Online]. Available:
http://en.wikipedia.org/wiki/Grand Challenges

[4] D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel
job scheduling,” in Job Scheduling Strategies for Parallel Processing.
Springer, 1998, pp. 1–24.

[5] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of workload in MPPs,” in Job Scheduling Strategies for
Parallel Processing, IPPS’97 Workshop, Geneva, Switzerland, April 5,
1997, Proceedings, ser. Lecture Notes in Computer Science, vol. 1291.
Springer, 1997, pp. 95–116.

[6] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a
multi-cluster supercomputer,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2005, pp. 176–193.

[7] V. Lo, J. Mache, and K. Windisch, “A comparative study of real work-
load traces and synthetic workload models for parallel job scheduling,”
in Job Scheduling Strategies for Parallel Processing. Springer, 1998,
pp. 25–46.

[8] E. Medernach, “Workload analysis of a cluster in a grid environment,”
in Job scheduling strategies for parallel processing. Springer, 2005,
pp. 36–61.

[9] B. Song, C. Ernemann, and R. Yahyapour, “Parallel computer workload
modeling with markov chains,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2005, pp. 47–62.

[10] A. Krampe, J. Lepping, and W. Sieben, “A hybrid markov chain model
for workload on parallel computers,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 589–596.

[11] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-
systems schedulers: are we doing the right thing?” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 20, no. 7, pp. 983–996,
2009.

[12] J. Sztrik, “Finite-source queueing systems and their
applications: A bibliography,” 2002. [Online]. Available:
http://irh.inf.unideb.hu/user/jsztrik/research/fsqreview.pdf

[13] O. Boxma, G. Koole, and Z. Liu, “Queueing-theoretic solution methods
for models of parallel and distributed systems,” in Performance Evalu-
ation of Parallel and Distributed Systems Solution Methods, 1994, pp.
1–24.

[14] M. Satyanarayanan, “Multiprocessing: An annotated bibliography,”
Computer, vol. 13, no. 5, pp. 101–116, 1980.

[15] H. Takagi and L. Boguslavsky, “A supplementary bibliography of books
on queueing analysis and performance evaluation,” Queueing Systems,
vol. 8, no. 1, pp. 313–322, 1991.

[16] D. Worthington, “Reflections on queue modelling from the last 50
years,” J Oper Res Soc, vol. 60, no. S1, pp. S83–S92, 2009.

[17] N. U. Prabhu, “A bibliography of books and survey papers on queueing
systems: Theory and applications,” Queueing Syst. Theory Appl., vol. 2,
no. 4, pp. 393–398, 1988.

[18] D. Terekhov, D. G. Down, and J. C. Beck, “Queueing-theoretic
approaches for dynamic scheduling: A survey.” [Online]. Available:
http://www.cas.mcmaster.ca/ downd/dariasurvey.pdf

[19] O. Boxma, G. Koole, and Z. Liu, “Queueing-theoretic solution methods
for models of parallel and distributed systems,” in Performance Evalu-
ation of Parallel and Distributed Systems Solution Methods, 1994, pp.
1–24.

[20] L. Green, “A queueing system in which customers require a random
number of servers,” Operations Research, vol. 28, no. 6, pp. 1335–1346,
1980.

[21] ——, “Comparing operating characteristics of queues in which cus-
tomers require a random number of servers,” Management Science,
vol. 27, no. 1, pp. 65–74, 1980.

[22] P. Brill and L. Green, “Queues in which customers receive simultaneous
service from a random number of servers: A system point approach,”
Management Science, vol. 30, no. 1, pp. 51–68, 1984.

[23] W. Whitt, “Blocking when service is required from several facilities
simultaneously,” AT&T Technical Journal, vol. 64, no. 8, pp. 1807–
1856, 1985.

[24] S. Kim, “M/m/s queueing system where customers demand multiple
server use,” Ph.D. dissertation, Southern Methodist University, 1979.

RUMYANTSEV: EVALUATING THE STABILITY OF SUPERCOMPUTER WORKLOAD MODEL 39

[25] G. Y. Fletcher, H. Perros, and W. Stewart, “A queueing system where
customers require a random number of servers simultaneously,” Euro-
pean Journal of Operational Research, vol. 23, pp. 331–342, 1986.

[26] D. Filippopoulos and H. Karatza, “An m/m/2 parallel system model
with pure space sharing among rigid jobs,” Mathematical and Computer
Modelling, vol. 45, no. 5–6, pp. 491–530, 2007.

[27] S. Chakravarthy and H. Karatza, “Two-server parallel system with
pure space sharing and markovian arrivals,” Computers & Operations
Research, vol. 40, no. 1, pp. 510 – 519, 2013.

[28] N. M. Van Dijk, “Blocking of finite source inputs which require
simultaneous servers with general think and holding times,” Oper. Res.
Lett., vol. 8, no. 1, pp. 45–52, 1989.

[29] E. V. Morozov and A. S. Rumyantsev, “Stability analysis of a mul-
tiprocessor model describing a high performance cluster,” in XXIX
International Seminar on Stability Problems for Stochastic Models and
V International Workshop “Applied Problems in Theory of Probabilities
and Mathematical Statistics related to modeling of information systems”,
Book of Abstracts. Moscow: Institute of Informatics Problems, RAS,
2011, pp. 82–83.

[30] J. Kiefer and K. Wolfowitz, “On the theory of queues with many
servers,” Transactions of the American Mathematical Society, vol. 78,
no. 1, pp. 1–18, 1955.

[31] ——, “On the characteristics of the general queueing process, with
applications to random walk,” The Annals of Mathematical Statistics,
vol. 27, no. 1, pp. 147–161, 1956.

[32] A. S. Rumyantsev, “Stabilization of a high performance cluster model,”
in Proceedings of 2014 International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
Saint-Petersburg, 06-08 Oct. 2014. Saint-Petersburg: IEEE, 2014, pp.
1–4.

[33] D. G. Feitelson, “Parallel Workloads Archive: Logs,” 2014. [Online].
Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

[34] ——, “Workload modeling for computer systems performance evalua-
tion (web draft),” http://www.cs.huji.ac.il/ feit/wlmod/wlmod.pdf, 2014.

[35] P. Erdős, “On an elementary proof of some asymptotic formulas in the
theory of partitions,” Annals of Mathematics. Second Series, vol. 43, pp.
437–450, 1942.

[36] L. A. Sanchis and M. B. Squire, “Parallel algorithms for count-
ing and randomly generating integer partitions,” Journal of Paral-
lel and Distributed Computing, vol. 34, no. 1, pp. 29–35, 1996,
WOS:A1996UJ38500003.

[37] K. Yamanaka, S.-i. Kawano, Y. Kikuchi, and S.-i. Nakano, “Constant
time generation of integer partitions,” IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., vol. E90-A, no. 5, pp. 888–895, 2007.

[38] R Core Team, “R-Forge,” 2014. [Online]. Available: http://r-forge.r-
project.org/

