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Local and Global Models for Large-Scale
Peer-to-Peer Systems

Dmitry G. Korzun

Abstract—This article considers selected mathematical mod-
els on the spectrum between local (microscopic) and global
(macroscopic) extreme views. The classification is oriented to
the large-scale property, which may not be ignored in designs of
P2P systems for the today’s and future Internet. A local model
exploits the knowledge directly available at a given node, leading
to easy implementation. A global model needs the knowledge
about the entire system, leading to preservation of certain system
invariants. The discussion introduces a rich family of analytical
models that fall into this classification and can be constructed
using rather simple mathematical techniques.

Index Terms—Analytical models, Cooperation, Internet, Net-
work analysis, Peer-to-peer computing, Performance, Routing

I. INTRODUCTION

Internet applications utilize the peer-to-peer (P2P) approach,
which supports effective resource sharing in the open and dy-
namic distributed environment. The approach does not require
centralized control and allows building large-scale systems
as self-organizing overlay networks. It becomes increasingly
popular in the today’s Internet and is crucial for future, espe-
cially in such prominent paradigms as ubiquitous computing,
Internet of Things, and Big Data. The main P2P features
include decentralization and governance autonomy, resilience
to massive changes and self-organization, load-balancing and
fault-tolerance, scalability and low overhead. Background on
the P2P approach, its benefits, system designs, and applications
can be found in books [1]–[4] and surveys [5]–[9].

A P2P system can be broadly defined as a distributed
system with no centralized infrastructure and where au-
tonomous participants (called peers or nodes) have symmetric
roles of a server, client, and router. Basic modeling and
algorithmic methods are inherited from earlier studied areas,
e.g., processor/communication interconnection networks [10],
parallel computation in shared memory [11], and computer
networks [12]. Nodes and their resources have unique iden-
tifiers (IDs). Distributed Hash Table (DHT) is a scalable
mechanism for resolving lookups of resource IDs to respon-
sible nodes [13]–[15]. Nodes self-organize by maintaining
resources and control data locally and by performing control
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operations for the cooperation. Examples include CAN [16],
Symphony [17], Chord [18], and Pastry [19].

The Internet provides a ubiquitous connectivity substrate
where nodes form an overlay network using the Internet Pro-
tocol (IP) for direct node-to-node communication. Each node
keeps contacts (node IDs and IP addresses in its routing table)
to a few other nodes (neighbors). A node acts as 1) a client
requesting resources it needs from a neighbor—consumption,
2) a server for incoming requests—contribution, and 3) a
router forwarding requests to a neighbor when the resource
is not available locally—both consumption and contribution.

The Internet-oriented case opens the possibility to construct
really large-scale P2P systems. The large-scale property meets,
however, nontrivial challenges. The key ones are heterogene-
ity in participant population and shared resources, trust in
distributed cooperation, and limitation of local knowledge on
the entire system. In certain respects namely these challenges
make the P2P area a distinct field for modeling, having with
own principles and methods.

The heterogeneity is inevitable property of modern net-
works, where assumption on homogeneity is mostly violated.
Qualitatively equal nodes of a P2P system must be quanti-
tatively different in their responsibility since they have dif-
ferent capacities. The Internet exhibits non-flat structure with
hierarchical domain organization. The resource distribution is
non-uniform due to data semantics.

Each node is controlled by an independent entity. Nodes
have to self-organize in an open distributed environment. Due
to autonomy, individual actions are voluntarily chosen and
determined by independent and rational behavior. Lack of
cooperation eventually degrades any P2P system if there is
no mechanism for establishing trust between nodes.

The assumption on global knowledge is impractical for
large-scale systems since a node can track no global and
precise view to the dynamic network topology and char-
acteristics of all participants. Having only local knowledge
of other nodes, each node makes own decisions based on
its subjective view. Cooperation activity expands or modifies
node’s subjective view, providing feedback to the decision
making process.

Solutions to the challenges lead to a rich source for elegant
mathematical models. They are applied to construct solutions
for use in internal algorithms and communication protocols.
Motivated by the large-scale property, this article considers
a classification of the mathematical models into two extreme
classes—local and global. A local model exploits only knowl-
edge directly available at a given node. A global model needs
knowledge about the entire system.
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For each class a set of selected models is discussed,
demonstrating the basic modeling principles. The focus is
on such well-known P2P application problems as neighbor
maintenance and network topology control, next-hop forward-
ing and lookup query routing, rational and fair cooperation.
Solutions based on a global model are limited to some high-
level characteristics of the system. Solutions based on a local
model suffer from the lack of relevant information to be used
in control actions.

On the other hand, a local model can be augmented with
additional knowledge and a global model can dismiss a part of
knowledge. Therefore, a wide spectrum of classes in between
local and global models exists. For practical use, such models
should be provided with a mechanism to tune the tradeoff
between local and global knowledge. Let us leave this topic
for further work.

The models selection reflects the large-scale property as
well as author’s experience in this area [4]. The article is inten-
tionally limits the selection with rather simple mathematical
models. An interested reader can find proofs and further details
in the provided references.

The rest of the article is organized as follows. Section II
summarizes P2P application problems used for demonstrating
the modeling aspects. Section III introduces the models clas-
sification and basic principles of modeling for P2P application
problems. Sections IV and V review selected local and global
models, respectively. Section VI summarizes the paper.

II. APPLICATION PROBLEMS

A P2P system can be viewed on the microscopic level (local,
node-respective) and on the macroscopic level (global, system-
wide). This section summarizes some P2P application prob-
lems relating this “local–global” point of view. Table I lists
examples of the corresponding pairs of application problems.

TABLE I
P2P APPLICATION PROBLEMS: LOCAL AND GLOBAL INSTANCES

Local Global
Neighbor maintenance: a node
constructs and updates its local
routing table

Network topology control: the sys-
tem keeps all nodes properly inter-
connected

Next hop selection: a node finds the
best neighbors to forward a given
search query

Routing: the system constructs an
efficient path for any search query

Rational cooperation: a node bal-
ances own consumption from and
provision to the system

Fair and generous cooperation: the
system maximizes the social wel-
fare of all participating nodes

A. Overlay Network Topology

Consider a P2P overlay of N nodes. Table II summarizes
the basic notation (based on [4]). Let node identifiers (IDs) be
assigned from a space S with a distance metric ρ. Examples
of space distance metric are the Euclidean distance adopted in
CAN [16], the length of the common prefix [20] adopted in
Pastry [19] and Tapestry [21], and the clockwise distance on
the integer ring [0, 2m) mod 2m adopted in Chord [18].

On the microscopic view, each node u maintains a local
routing table Tu of entries (v, IPv), where v is a neighbor

TABLE II
SYMBOL NOTATION

Notation Description
S Node ID space (scalar or vector). Let u, v, and w stand for

P2P nodes and their IDs.
N The number of alive nodes in overlay. In some contexts, N

denotes the full set of alive nodes.
u, v, w P2P nodes by their IDs.
Tu, Nu Routing table of u ∈ N . Although Tu consists of pairs

(v, IPv) let us write v ∈ Tu if no confusion. Let Nu be
the set of u’s neighbors if IP addresses are not important.

u→+ v Multi-hop overlay path u→ w1 → w2 → · · · → wl−1 →
v. The number of hops is the path length |u→+ v|.

ρ(u, v) Distance metric in S that satisfies (i) ρ(u, v) > 0 ∀u, v ∈
S, u 6= v, (ii) ρ(u, u) = 0 ∀u ∈ S. The symmetry property
and the triangle inequality are optional.

τ(u, v) Distance metric in network, e.g., the number of overlay hops
or the sum latency of u→+ v.

D Resource key space (application-specific).
R The number of resources (data items or data keys) stored

(and available) in the overlay. In some contexts, R also
denotes the full set of currently available resources.

Ru Resources that u knows; Ru = R+
u ∪ R−u , |Ru|, where

R+
u =

⋃
v∈Nu

R+
v and R−u =

⋃
v∈Nu

R−v are the sets
of external-like and local-like resources, respectively.

avk , bvk Metrics of u’s consumption and provision of k ∈ Ru

through v ∈ Nu.
dvk Surplus counters: dvk = avk − bvk , dv =

∑
k∈Ru

dvk ,
dk =

∑
v∈Nu

dvk .
αvk , βvk Clear u’s consumption and provision of resource k ∈

Rv through v ∈ Nu; dvk = αvk − βvk such that
min{αvk, βvk} = 0.

sk Local resource rank of k ∈ Ru, both for provision and
consumption.

r−v , r+v Local node ranks of neighbors v ∈ Nu, for provision and
consumption, respectively.

and IPv is its IP address. The number of neighbors |Tu| is
the node degree. If |Tu| � N then u has local knowledge
only about the overlay network. On the macroscopic view, the
nodes form a network. Its topology governs how the nodes are
interconnected [6].

Overlay network topology is modeled as a graph, embedded
into S. The graph is directional: v ∈ Tu does not necessarily
lead to u ∈ Tv . It means that u processes incoming requests
from some w ∈ N for w /∈ Tu, and the node in-degree |{w |
u ∈ Tw, w ∈ N}| must be used for characterizing the load of
u, in addition to the node out-degree |Tu|.

Structured P2P overlay networks aim at efficient search-
ing [8] to guarantee location of a target resource within a
moderate number of hops even for large N . The location of
resources depends essentially on the network topology. The set
of nodes receiving a particular query becomes related to the
content of the query. A node arranges its neighbors and selects
the best ones to resolve search queries. Network topology is
tightly controlled via careful maintenance of neighbors [14],
and the resultant distributed maintenance repairs the connec-
tivity among nodes in the face of network dynamics.

B. Routing

A P2P system takes care of distributed assigning and locat-
ing resources. A mapping from D to N associates resources
with participating nodes. Structured P2P networks use the
DHT lookup service [13]. It can be thought as a distributed
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“indexing” mechanism to resolve search queries. DHT takes
(k, data) value as input (k ∈ D), hashes k to establish a
mapping from keys to nodes (the lookup service), then assigns
the data with the node identified.

Consider a typical (flat) DHT. The resource key space D
and node ID space S coincide. Each resource has a unique
key k ∈ S; DHT implements hashing the key to the node ID.
For example, the greedy strategy makes the node d with the
closest ID responsible for a key k,

d = arg min
u∈N

ρ(u, k). (1)

At any instant, d is responsible for keys

S(d) = {k ∈ S | ρ(d, k) < ρ(u, k) ∀u ∈ N, u 6= d} .

Let a node u initiate a lookup for a given key k. Since Tu
does not contain all nodes, the lookup performs multi-hop
overlay routing from u to d, where d is unknown beforehand.
Each intermediate node w finds the next-hop node v ∈ Tu to
forward the lookup, thus forming the one-hop path w → v
in the overlay network. Eventually, an l-hop path u →+ d is
constructed for l = |u→+ d| ≥ 1:

u→ w1 → w2 → · · · → wl−1 → d. (2)

For the convenience, denote w0 = u and wl = d. This multi-
hop routing process is depicted in Fig. 1.

DHT routing exploits the properties of metric space (S, ρ).
In progressive routing, lookup path (2) consists of nodes which
are closer to d, i.e., ρ(wi, d) < ρ(wi−1, d). Since d is unknown
beforehand, progressive routing applies the key-based criterion

ρ(wi, k) < ρ(wi−1, k), i = 1, 2, . . . , l − 1. (3)

Greedy routing is the extreme instance of progressive rout-
ing when each next-hop node wi is the neighbor closest to k,

wi = arg min
v∈Twi−1

ρ(v, k), i = 1, 2, . . . , l − 1. (4)

Note that (4) is a local approximation of (1): the minimization
is performed within Twi−1

⊂ N .

1

2

3

4

− overlay node − IP router

u
d

Fig. 1. Multi-hop routing: one hop in the P2P overlay leads to several hops
in the underlying IP network

C. Neighbor Maintenance

DHT lookup service is a base for self-organization. When a
new node u joins, it contacts any existing node to lookup for
u (the node ID acts as a key). According to (1), the lookup
returns the closest neighbor v, identifying the location of u in
the overlay. Then u communicates with v to initialize Tu and
u’s resource storage as well as to disseminate the topology
update information. When a node u leaves, it notifies its
neighbors and passes its resources to new responsible nodes.
In open and dynamic environments, nodes generally leave the
system far less gracefully due to network failures, selfish or
malicious reasons, and temporal leaves.

Locally, every node has to perform neighbor maintenance.
In the proactive strategy, a node regularly checks its neighbors,
e.g., by pinging them periodically. In the reactive strategy,
existing overlay communications are used to detect update
events, e.g., a neighbor has not responded for lookup by
predefined time. When a node u detects that its neighbor v has
leaved, u performs the actions similar as if v notified about
its voluntary leave. This local activity implements distributed
topology control, making the nodes correctly interconnected.

A fundamental tradeoff problem is routing table size vs. net-
work diameter [14], [15]. Clearly, the larger |Tu| the shorter
|u→+ d|. Many popular in practice DHTs provide |Tu| =
O(logN) and |u →+ d| = O(logN). Better tradeoffs are
possible, e.g., O(1) state and O(logN) routing or O(

√
N)

state and O(1) routing. More complicated network topologies
and larger routing tables, however, lead to higher maintenance
costs.

Selecting the best tradeoff becomes a challenging problem
in case of high dynamics and heterogeneity. The former is
one of the P2P characteristic property, which distinguishes
P2P systems from many other decentralized systems. It is also
known as churn—the system experiences rapid membership
changes. The heterogeneity is an inevitable property of such
networking environments as today’s and future Internet.

The routing distance τ(u, d) is one of the key performance
criteria for the tradeoff. For example, τ(u, d) = |u→+ d| is
the number of hops in the overlay network. More accurate
metrics take into account the latency in the underlying net-
work, e.g., τ(u, d) = |u →+ d|τ =

∑l
i=0 τ(wi, wi+1) is the

total lookup latency for (2).

D. Cooperation

Each node provides and consumes resources to and from
other nodes, forming node’s costs and gains. In open au-
tonomous systems, nodes are intrinsically selfish. They attempt
to maximize own utility, lowering the overall system welfare.
Individual consumption tends to come without proper contri-
bution (free-riding). Anonymous nodes are less accountable
for their activity and change their IDs with near zero cost
(whitewashing). Due to dynamics, many interactions among
nodes are one-time; nodes have no idea about other nodes’
behavior history, except their current behavior, so very short-
term decision-making is needed.

Cooperation among nodes is supported with incentives [22].
A system-wide incentive mechanism encourages every node to
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TABLE III
DECISION-MAKING AT A NODE u IN MULTI-RESOURCE CONSUMPTION AND PROVISION

Consumption: u is a client, v ∈ Nu are servers Provision: u is a server, v ∈ Nu are clients
Selection of (k, v) for k ∈ R+

u and v ∈ Nu is a consumption decision
problem: which resource and from which neighbor to request.

Selection of (v, k) for v ∈ Nu and k ∈ R−u is a provision decision
problem: to which neighbor which resource to provide.

Resource ranks s = (sk)k∈Ru

Node ranks r+ = (r+v )v∈Nu Node ranks r− = (r−v )v∈Nu

1. Allocate consumption capacity among resources k ∈ R+
u

proportionally to sk.
2. For given k, allocate its capacity share among neighbors v ∈ Nu

proportionally to r+v .

1. Allocate provision capacity among neighbors v ∈ Nu

proportionally to r−v .
2. For given v, allocate its capacity share among resources k ∈ R+

u

proportionally to sk.

balance rationally in its resource contribution and consump-
tion. In reciprocity-based schemes [23], nodes maintain histo-
ries of behavior of other nodes, analyze trends, and apply this
information in local decision making. When a node v become
low-contributing then other nodes detect this behavior and
reduce their cooperation with v such that links to v eventually
disappear. That is, if v is still interested in participation in
the system then v is incited to increase its contribution, i.e.,
supporting v to be rational in the cooperation.

Recall that all communications are through neighbors.
Bilateral exchange (or direct reciprocity) naturally happens
between nodes interested in the same content at the same
time. The idea is “I help you and you help me”. Collecting
past observations can help analyzing stable good neighbors
for longer-term time periods. Any node u knows at time t two
local metrics, avk = avk(t) and bvk = bvk(t), which are u’s
consumption and provision of resource k through neighbor v,
respectively. The metrics aggregate the local history of u’s
direct observations.

Bilateral exchange u↔ v is not always possible, since for
two arbitrary nodes u and v the former may have no resources
that the latter needs. Indirect reciprocity can provide useful
extension of the local knowledge. The principle is “I help
you and someone helps me”. Exchange cycles [23], [24] like
u → w → v → u can be formed, when u has resources
interested for w, w has resources interested for v, and finally
v has resources interested for u. Such cycles are the base for
multilateral exchange in P2P systems [25].

A reputation system is often employed to detect malicious
nodes or reward well-behaving ones [26], [27]. It provides
a distributed mechanism to assign each node with a global
reputation value according to its past behavior. Differentiated
services are then provided to nodes. A reputation value is
an aggregation of opinions from all nodes, i.e., a reputation
system is a global mechanism to support indirect reciprocity.
The basic aim is at maximizing social welfare—a global
measure of economical efficiency of the cooperation.

E. Resource Exchange

Let R denote the index set of all system resources. For
simplicity assume that each resource is of unlimited supply,
e.g., video streaming. A node u consumes external resources
k ∈ R+

u and provides local resources k ∈ R−u (let Ru =
R+
u ∪R−u ). Consumption and provision are through neighbors

v ∈ Nu. Discrete time periods {1, 2, . . .} are indexed by t and

possibly infinite. Each node u decides its activity for period
t + 1 based on the local knowledge (avk and bvk) collected
up to period t (including). Further omit t in the notation when
the context of repeated transitions t→ t+ 1 is clear.

BitTorrent [28] is an example of a single-resource P2P
system, where the shared resource is bandwidth. Neighbors v
consume from u in period t+1 according with their provision
to u in t. This is an instance of bilateral exchange, and u makes
bv(t+1) close to av(t). Table III shows the general case when
a node u performs two parallel iterative processes in t+ 1. In
provision, u iteratively selects (v, k) to provide v a portion of
k, so having full control of bvk(t+1) for v ∈ Nu, k ∈ R−u . In
consumption, u observes avk(t+1) for v ∈ Nu, k ∈ R+

u since
it depends on v’s provision strategy. Nevertheless, u can reduce
avk by requesting less from v or u can stimulate increasing avk
by more requests to v. Accordingly, u iteratively selects (k, v)
to make a request for k to v.

These two local processes result in sharing u’s consumption
and provision capacity between neighbors and resources. The
bottom part of Table III shows two-phase rank-based sharing.
Resource ranks sk and node ranks r+

v and r−v are non-
negative real numbers that quantify importance of k ∈ Ru
and v ∈ Nu to u (local ranks or scores). The iterative rank-
proportional allocation can be implemented in a round-robin
fashion, typically with normalized ranks∑

k∈Ru

sk = 1,
∑
v∈Nu

r+
v = 1,

∑
v∈Nu

r−v = 1. (5)

Since u in consumption is primarily interested in resources,
not from whom to consume them, u decides which resource
to request and only then from which neighbor. Similarly, in
provision, u serves neighbors, allocating its capacity for them,
and only then u decides which resources to provide to a
selected neighbor. A node u computes separate local ranks for
nodes and resources. The ranks are used in the two parallel
iterative processes of provision and consumption. Provision
of k from u to v is proportional to r−v sk. Consumption of k
from v to u is proportional to skr+

v .

III. APPROACH FOR MODELING

A diversity of mathematical models is known for the
P2P application problems from Section II. Given a model,
a solution can be constructed applicable either on global
(system-wide) or local (node-respective) level. The solution
then is implemented on control elements of the system, e.g.,
on individual nodes or using a distributed algorithm. Although
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many mathematical techniques have been already employed
in P2P system designs and communication protocols, the
common goal is to provide means for control elements to make
decisions based on arranging available alternatives.

A. Local and Global Extremes in Modeling

From the point of solution implementation, two extreme
classes of models can be considered: local and global. Local
models are oriented to operation on an individual node, using
locally observable information. Global models need input from
many nodes and can provide results to many nodes.

Potentially, a global model can describe all required char-
acteristics of a given system if all input data and relations are
precisely specified. Applicability of such models is limited
due to the practical implementation reasons. There are three
ways to implement a global model. Its computations can be
delegated to a node, to a centralized subsystem, or to all nodes
via a distributed algorithm.

Node-hosted implementation: The capacity of a single node
is limited, and the computations can be resource-expensive
in a large system. The assumption on availability of global
knowledge on a single node is impractical due to large-scale
distribution and high dynamics of the system.

Centralized subsystem: Data collection and resource expen-
sive computation can be implemented in a centralized manner.
This way, however, contradicts with the decentralized nature of
P2P systems, makes the centralized subsystem a single point
of failure, and introduces a third-party element of trust. In the
large-scale case, even a powerful subsystem cannot instantly
recognize the up-to-date global state of the system, since the
communication latency has significant effect.

Distributed algorithm: Nodes exchange control information
to collectively compute certain global characteristics. In a
result, each node knows a global state of the system based
on direct observations of neighbors behavior and indirect
information from its neighbors about the others. An example is
computation of reputation values of nodes. The key problems
are low information propagation speed and trust issues.

Local models effectively support adaptive algorithms, which
each node should perform during its participation in the
system. Based on a local model the node makes own decisions.
Directly observable information is used for input, indirect
information about non-neighbor nodes is ignored.

Although being local, such models also support distributed
implementation. Individual decision-making at each node pro-
vides new input information for other nodes, i.e., the system
evolution is iterative. Nevertheless, the parallel activity of
many nodes is loosely coupled and not tightly synchronized.
Any node affects only a small subset of other nodes. The
information propagation speed in the distributed system can
be very low as well as the communication latency becomes a
significant factor.

Global models are limited to high-level characteristics,
which are relatively stable and can be effectively computed
within the system. Local models suffer from the lack of
relevant information to be used in control actions. Models that
are in between local and global ones can be constructed based

on their extreme analogues. That is, a local model can be
augmented with additional knowledge, e.g., routing benefits
when a node can look ahead its neighbors. Similarly, a global
model can limit itself with recently available part of global
knowledge, e.g., ranking using a smaller graph instead of
global topology graph.

B. Related Mathematical Techniques

Techniques of network analysis form the base for mathe-
matical modeling in the P2P area. Various graph characteris-
tics and algorithms behind are used. Examples are network
diameter, which is important for routing [29], [30], and
network connectivity structure, which provides information
for ranking [31], [32]. In particular, this kind of modeling
explains [29] the fundamental limit that the local knowledge
problem induces. The diameter of a network with N nodes
and equally fixed node degree m = |Tu| ∀u ∈ N has the
logarithmic lower bound

D = max
u,v∈N

min
u→+v

|u→+ v| ≥ dlogm (N(m− 1) + 1)e − 1.

It is a direct consequence of the Moore bound

N ≤ 1 +m+m2 + · · ·+mD =
mD+1 − 1

m− 1
.

When all the global relations of nodes are known and
nodes behavior can be completely specified as some types of
stochastic processes then the methods of queuing networks
can be applied, e.g., see [33], [34]. Each node is modeled
as a processor with certain arrival and service patterns. Sim-
ilarly, certain equation systems can describe node population
dynamics or resource distribution evolution, based on tech-
niques of fluid models and control theory [35], [36]. Such
models allow a node to understand the current global state
and react correspondingly. For large-scale P2P systems this
approach often becomes impractical since a node can track no
global and precise view to the dynamic network topology and
characteristics of all participants.

As in many dynamic systems, nodes make own decisions
based on observations (feedback)—the problem studied in
control theory. Nodes consider the entire P2P system as a
plant to be controlled [37]. Each node tracks contributions
from other nodes and adopts its own contribution accordingly.
These observations of others’ contributions represent a global
state of the system, hence leading to similar difficulties of
global knowledge as in other models of global system state.

Nodes can reduce the observation space to direct observa-
tions from neighbors and aggregate indirect observations from
the rest of the system. This approach is used in reputation
schemes, and distributed learning-propagation algorithms are
required [38], [39]. Indirect observations suffer from malicious
nodes. The propagation efficiency can be low in large-scale
high-dynamic systems.

Game theory focuses on P2P exchange economies with
system-wide indexes like the overall node reputation metric
or global resource prices, e.g., see [25], [40], [41]. It allows
clear economic models with the intuition and properties from
classic monetary-based economies. If a node knows the index
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then the node can rationally select its participation strategy.
The system converges to an equilibrium point, e.g., when there
is no node that can improve its utility by deviating from the
optimal strategy (Nash equilibrium). A distributed algorithm
is required for computing such indexes, similarly to reputation
learning-propagation schemes.

C. Basic Arrangement Rules

Local and global models provide the system and its nodes
with information for decision-making. Control processes are
adaptive and based on differentiation: selection of the best con-
trol action for given input at given time. Although there exist
many rigorous mathematical methods, all of them conceptually
follow one of the basic arrangement rules, listed below.

They are applicable in P2P systems for taking the hetero-
geneity of nodes into account [9]. Let X be a set that represent
some knowledge about the system. For example, X = N is
the set of all nodes in the system or X = Nu consists of all
neighbors of some u ∈ N . In general case, u’s knowledge of
X may differ from the knowledge of other nodes v 6= u.

Ordering: A node u uses a binary relation ≺ such that
for any x, y ∈ X either x ≺ y, y ≺ x or x = y. In
other words, u can arrange elements of X in accordance with
some “preference”. The following two rules are extensions
(continuous and discrete) of the ordering rule.

Ranking: There is a rank function r : X → R, and u
computes a real numerical value r(x) for each x ∈ X . Thus,
elements of X are ordered on the real line R. The important
additional information is the value |r(x)− r(y)|, which is the
preference level for u to compare x and y.

Classifying: The elements of X are categorized into groups
or levels i = 1, 2, . . . ,M according to the preference. Al-
though this rule leads to less precision than the ranking rule the
former allows tradeoffs between the complexity and accuracy.
For convenience, we assume that i = 1 is “most preferable”
and i = M is “least preferable”.

IV. LOCAL MODELS

Selected models of this section illustrate that moderate
amounts of input information can be satisfactory for making
individual decisions on nodes. Distributed activity of such
local decision-makers achieves efficient routing and fair co-
operation on the system level.

A. Progressive Next Hops

The known routing efficiency of DHT is due to specific
arrangements in local routing tables. A common case is routing
within O(logN) hops. In fact, rhe small-world phenomenon,
which supports the existence of short paths, is a result of the
local activity of nodes.

1) Small-World Neighborhood: A node classifies its neigh-
bors onto local and long-range (Fig. 2). Local neighbors are
similar in terms of the distance. Long-range neighbors are
arranged in u’s vicinity.

long−range neighbors

u

local neighbors ρ

Fig. 2. The small-world hierarchy of neighbors: 1) classification onto
local and long-range; 2) arrangement of long-range neighbors with vicinity
clustering at all distance scales

Kleinberg’s small-world construction [30] highlights the
idea of selection distant nodes for neighbors. The node ID
space is the n× n grid

S = {1, 2, . . . , n} × {1, 2, . . . , n}
with ρ ((x1, y1), (x2, y2)) = |x2 − x1|+ |y2 − y1|,

where N ≤ n2. Local neighbors of u are all v such that
ρ(u, v) ≤ ε for a universal constant ε ≥ 1. Additionally, u
selects m ≥ 1 long-range neighbors with probability propor-
tional to [ρ(u, v)]−α for α ≥ 0. The parameter α controls the
density of long-range neighbors at all distance scales. When
α = 0 the neighbors are distributed uniformly. As α increases,
they become more clustered. Greedy selection (4) of next hops
leads to paths with the expected length O(log2N) if α = 2.

Symphony [17] is a particular inspiration of Kleinberg’s
small-world construction. The ID space is a ring (the unit
interval [0, 1) mod 1). The distance ρ(u, k) is the clockwise
arc length from u to k. It is asymmetric, and routing is
unidirectional (clockwise). A node u is responsible for the
arc [u, v) where v is closest to u. Node IDs have uniform
distribution in S. Every node maintains m′ = 2 local and
m ≥ 1 long-range neighbors. Local neighbors are the closest
nodes on the ring. A node u selects a long-range neighbor
v closest to the point u + δ mod 1 for a random δ. The
generation of δ is independent with the harmonic probability
density function h(x) = 1/(x lnN) for x ∈ [1/N, 1), where
N ≥ 2 is estimated locally. Intuitively, δ = 1/N is the mean
distance to u’s closest node and δ = 1 is supreme for the most
distant one. Hence all candidates for long-range neighbors are
in [u+1/N, u+1) mod 1. Greedy selection (4) in Symphony
results in paths of the expected length

E
[
|u→+ d|

]
=

O
(

1

m
log2N

)
if m = O(1),

O(logN) if m = Ω(logN).

(6)

The local state conditions in (6) define tradeoffs in the amount
of local information per node.

2) Geometrically Progressive Routing: A hop u → v for
k is called b-progressive (geometrically progressive with the
ratio 1/b) if

ρ(v, k) ≤ ρ(u, k)

b
for b > 1. (7)

That is, the current distance is reduced at least by b.
Routing is called geometrically progressive if u always

selects b-progressive hops in resolving lookups. It can be
easily proved [4] that geometrically progressive routing has
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logarithmic routing efficiency in the worst case, i.e., the
number of hops to resolve a lookup is at most O(logbN).

The progress bj > 1 at each hop j may be different due to
the majorant sequence

{N/(b1b2 · · · bj)}lj=1 ≤
{
N/bj

}l
j=1

with b = min{bj | j = 1, 2, . . . , l} > 1.
To implement geometrically progressive routing the system

design must ensure that every node knows a b-progressive hop
for any key. In Symphony, the long-range neighbor selection
is based on a continuous model for the distance scales. It
approximates geometrically progressive routing since some
hops may be not 2-progressive. As a result, constructing
O(logN) paths is not possible when the number of neighbors
per node is constant. Nevertheless, many popular practical
DHT implementations uses designs that accurately follow the
principle of geometrically progressive routing.

B. Local Ranks

Nodes should exchange resources cooperatively. If a node
does not contribute its resources it must be debarred. Such
decisions can be implemented based on local information only.

1) Single-Resource Exchange: BitTorrent [28] is an exam-
ple of P2P system for single resource exchange. A BT-system
shares node bandwidth—bilateral single-resource exchange. In
this exchange, resource rank s is needless (s = 1). The BT
consumption rule is “consume as much as you can from any
neighbor” makes node rank r+ also needless. The provision
process in Table III from Section II becomes one-phase: u’s
upload bandwidth is allocated as bv = r−v b for v ∈ Nu.

A node u provides its upload bandwidth b =
∑
v∈Nu

bv
and consumes download bandwidth a =

∑
v∈Nu

av . The
incentives for u are straightforward: if u makes bv(t) low then
v may reduce av(t+1). Formally, u cooperates with v if there
exists δv ≥ 0 such that for any t

av(t)− bv(t) ≤ δv, (8)

where dv(t) = av(t)− bv(t) is recent surplus of v.
Low provision bv limits consumption av , up to av ≤ δv for

bv = 0; high consumption av is possible only if u provides
appropriately high bv . Parameter δv is an upper imbalance
bound that v tolerates. If δv = 0 then u has no credit, and
unit consumption requires provision in advance or immediate
response (difficult to realize in open network environment). If
v is altruistic then δv =∞.

The provision process in period t + 1 aims at making
bv(t + 1) = r−v b. In original BitTorrent [28], u uploads to
n top neighbors from Nu sorted by av , i.e., r−v = 1/n for
v ∈ Nbest

u and r−v = 0 otherwise. In proportional sharing [41],
[42], all neighbors are fed with r−v = av/a. Block-based
BitTorrent [43]–[45] immediately sets r−v = 0 if av − bv is
lower a threshold. FairTorrent [46] makes instant decisions
with one upload per period—to the neighbor with highest rate
av − bv , reducing the largest term in

∑
v∈Nu

(av − bv).
The above decision-making aims at the rational use of (8)

with uncertainty about δv . On one hand, dv < 0 is unprofitable

for u. On the other hand, u has to merely assume that δv is
small, and dv > 0 signals on possible violation in (8).

The traditional technique of operations research can be
applied to this problem. Consider ranks r−v that minimize
expected deviation from the balance dv(t + 1) = 0. Setting
bv(t + 1) = r−v b and approximating unknown in advance
av(t+1) with observed av = av(t), we yield the following op-
timization problem (the mean-square deviation was selected).

∑
v∈Nu

(av − r−v b)2 → min∑
v∈Nu

r−v = 1,

r− ≥ 0.

(9)

The solution to (9) is

r−v =
av
b

+
b− a
|Nu|b

if min
v∈Nu

av ≥
a− b
|Nu|

, (10)

where b−a
|Nu|b is average relative skew of u’s participation in the

system. The condition in (10) is due to r− ≥ 0. If a = b then
r−v = av/b, coinciding with proportional sharing [41], [42].

If u provides in sum less than it consumes (a > b) then there
can be neighbors lower the average (av < (a− b)/|Nu|), and
solving (9) becomes more complicated. Some BT-exchanges
use the discrete heuristic: highest dv are important only. If
av(t)� bv(t) then u takes r−v > 0 to keep v’s generosity and
sets r−v = 0 otherwise. The case is similar to (9) but ranking
is reduced to the best neighbors Nbest

u ⊂ Nu.
When u has limited consumption capacity then node con-

sumption rank r+ can be computed similarly to (9) and (10).
The solution is symmetrical to (10):

r+
v =

bv
a

+
a− b
|Nu|a

if min
v∈Nu

bv ≥
b− a
|Nu|

. (11)

Model (9) captures the property important for recipro-
cal incentives. If u minimizes deviation from the balance
dv = av − bv = 0 then u supports preserving (8), even in
unfavourable cases δv ≈ 0.

Ranks r−v = r−v (av) in (10) and r+
v = r+

v (bv) in (11) are
non-decreasing functions on av and bv , respectively. It allows
generalization of the BT heuristics and incentives. Instead
of fixing an optimization problem which ranks are solutions
to, let us assume that node ranks r−v and r+

v are monotone
functions of x = dv = av − bv , reflecting imbalance between
the actual provision and consumption as shown in Fig. 3.

v
r

imbalance

v is stingy

u’s actions: u’s actions:

imbalance

u is stingy

v
d

v
r

1. reduce provision

2. accelerate consumption

x = 

1. encourage provision

2. reduce consumption

−  +  

balance

Fig. 3. Local single-resource exchange with v ∈ Nu. Let u have surplus
x = dv for given v. Activity of other neighbors w 6= v is fixed (in terms of
dw). Node ranks r−v (x) and r+v (x) behave monotonically
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2) Multi-Resource Exchange: In multi-resource exchange,
surplus of v is a sum of its resource surpluses, dv =∑
k∈Rv

dvk. Resource compensation is possible since u op-
erates with a set of resources. For example, u tolerates low
provision avk from v because of high provision avi for
k, i ∈ Ru and i 6= k. Cross-node resource compensation can
also happen: small avk and high awi for w 6= v.

Node ranks r+ and r− are functions of the surplus matrix
D = {dvk}. Varying dvk when other surpluses are fixed leads
to appropriate changes in ranks to reflect the imbalance. Let
every dwi be fixed abut x = dvk. Then r+ and r− are local
node ranks if and only if they satisfy the following properties

Monotony: r−v (x) is a non-increasing function and r+
v (x) is

a non-decreasing function.
Marginality: lim

x→−∞
r−v (x) = lim

x→+∞
r+
v (x) = 0 and

lim
x→+∞

r−v (x) = lim
x→−∞

r+
v (x) = 1.

There are incentives for u to cooperate with v if there is
δv ≥ 0 such that for any t∑

k∈Ru

(avk(t)− bvk(t)) ≤ δv, (12)

where dv(t) =
∑
k∈Ru

(avk(t)− bvk(t)) is sum surplus of v.

Although the same resource can be used in exchanges with
different nodes there is no neighbor that parasitizes because of
generosity of some other neighbors. The latter easily happens
when u considers only the overall sum:∑

v∈Nu

∑
k∈Ru

(avk(t)− bvk(t)) ≤ δ.

A node u realizes the incentives by balancing near dv = 0
for all v ∈ Nu: high dv likely violates (12) and low dv
is unprofitable for a rational node. Expected deviation is
minimized by controlling bvk(t+ 1) for v ∈ Nu and k ∈ Ru.
For each k reaction to observation avk(t) may affect bvk(t+1)
as well as bvi(t+ 1) for some i 6= k. Differentiation is needed
to select appropriate resources for the reaction. Resource ranks
sk ≥ 0 quantitatively implement the differentiation.

Resource rank needs different assumptions than node rank.
In the latter case, a neighbor v is both provider and consumer;
each role receives its own rank. The simplest case for resource
rank happens if any resource k has a single role being either
local (u provides k ∈ R−u ; avk = 0, bvk ≥ 0 ∀v ∈ Nu) or
external (u consumes k ∈ R+

u ; avk ≥ 0, bvk = 0 ∀v ∈ Nu).
A generalization is transit resource, which can be used for

better trading opportunities in resource exchange. For example,
assume u downloads file k from v (avk > 0); the file is not
of interest of u itself; uploading k to w (bwk > 0) allows u to
download another file i from w (awi > 0). Hence k is transit
resource that u uses to receive another resource i. A particular
case of transit resource is bidirectional resource (avk, bvk > 0),
e.g., bandwidth in BT-systems.

Denote the net consumption and provision

αvk =

{
dvk = avk − bvk, if dvk > 0,
0, otherwise.

βvk =

{
−dvk = bvk − avk, if dvk < 0,
0, otherwise.

provides much

k is local−like s
k

k is external−like

imbalance

u consumes much

d
vk

x = 

u

imbalance balance

Fig. 4. Qualitative behavior of resource rank sk as a function of surplus
x = dvk when other activity is fixed. If k is pure local or pure external
then sk(x) is defined on (−∞, 0] or [−∞, 0), respectively. The function is
neither required to be symmetrical sk(x) = sk(−s) nor contiguous

Clearly, dvk = αvk−βvk. Let R+
v = {k | αvk > 0}, R−v =

{k | βvk > 0}, and Rv = R+
v ∪R−v . The notation emphasizes

that R+
v consists of external-like resources (currently under

u’s consumption) and R−v consists of local-like resources
(currently under u’s provision) Then R+

u =
⋃
v∈Nu

R+
v and

R−u =
⋃
v∈Nu

R−v . Although R+
v ∩R−v = ∅ ∀v ∈ Nu the set

R+
u ∩R−u can be nonempty.
Let dk =

∑
v∈Nu

dvk be surplus of k for u. Resource k
is balanced when dk = 0, i.e., neighbors provide in sum the
same amount of k as they consume. The less |dk| the more
preferable for u to consume or provide k. Hence sk can be
treated a balance closeness index.

Let every dwi be fixed abut x = dvk. Then s is local
resource rank if and only if s satisfies the following properties
for all v ∈ Nu and k ∈ Rv .

Monotony: sj(x) is a non-decreasing function on (−∞, 0]
for any j ∈ R−v and si(x) is a non-increasing function on
[0,∞) for any i ∈ R+

v .
Marginality: lim

x→−∞
sj(x) = lim

x→+∞
si(x) = 0 for any i ∈

R+
v and j ∈ R−v .
The qualitative behavior is shown in Fig. 4. Intuitively, when

dvk becomes high then s prioritizes reduction in provision of
any external-like resource i ∈ R+

v , including k (since k ∈
R+
v if dvk > 0). When dvk becomes low then s prioritizes

reduction in consumption of any local-like resource, including
k (since k ∈ R−v if dvk < 0).

Resource rank induces node ranks for every v ∈ Nu as
“sum rank” of resources available through v. Let

r+
v =

∑
i∈R+

v

si, r−v =
∑
j∈R−

v

sj , (13)

C. Linear Ranking

In multi-resource exchange, resource ranks become essential
for proper differentiation of nodes. Let us discuss a model of
resource ranks, which defines them as solutions to a homoge-
nous linear equation system. It states local exchange balance
for all neighbors and resources. Computation is reduced to a
linear programming problem.

1) Linear resource ranks: Let a node u maintain surplus
counters dvk = αvk−βvk for all its neighbors v and resources
k. Consider the following homogenous system of n = |Nu|
equations in m = |Ru| non-negative unknowns.∑

k∈Ru

dvksk = 0, v ∈ Nu. (14)
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Let ||s||1 =
∑
k∈Ru

|sk| =
∑
k∈Ru

sk (i.e., the L1 norm).
If s 6= 0 (non-trivial) then s/||s||1 is a normalized solution.
Linear resource rank is defined as any normalized solution
to (14) or the trivial solution if (14) has no other solutions.

Given a linear resource rank s. Intuitively, if sk = 1/m then
k is balanced. If sk < 1/m then the lower rank value is due
to k excites the imbalance. If sk > 1/m then the higher rank
value is due to other resources excite the imbalance.

Now consider a linear rank s with sk = 0. Then the rank-
proportional allocation ignores k. The knowledge {dvk}v∈Nu

is unused though dvk 6= 0 for some v and k. Consequently, k
does not influence to other ranks, as if k is not presented
in (14). Hence, there is no differentiation compared with
inactive resources. Furthermore, if there are several such k
then there is no differentiation between them.

Linear resource rank s is effective if sk > 0 ∀k ∈ Ru. Re-
jection of too imbalanced resources is possible when needed:
if 0 < sk < ε0 then k is worse than an inactive resource. Addi-
tionally, high si does not necessarily lead to high productivity
with i, e.g., (a) u requests much i but the neighbors suddenly
become stingy, (b) altruistic neighbors provide much i in
spite of u’s low response, or (c) u can provide much i but the
neighbors request less. The capacity should be redistributed
proportionally to ranks, including low-ranked resources since
their sum share in Ru can be appreciable. In particular, it
diminishes the problem of BT-exchange when many nodes are
excluded from participation or underutilize capacity.

Given v ∈ Nu a v-equation is the corresponding equation
in (14). Rewrite each v-equation such that its unknowns appear
with positive coefficients:

∑
i∈R+

v

αvisi =
∑
j∈R−

v

βvjsj , v ∈ Nu,

s ≥ 1.

(15)

Given i ∈ R+
v and j ∈ R−v define the ith and jth v-families

of solutions:

Hvj =
{
h =

(
σ
ej

)
|
∑
k∈R+

v

αvkσk = βvj , σk ≥ 0
}
,

Hvi =
{
h =

(
ei
σ

)
| αvi =

∑
k∈R−

v

βvkσk, σk ≥ 0
}
.

(16)

Hence Hvj contains solutions to the v-equation such that sj =
1 and sk = 0 for k ∈ R−v \ {j}. Similarly, s ∈ Hvi is such
that si = 1 and sk = 0 for k ∈ R+

v \ {i}.
Further let vectors inHvj andHvi be of the same dimension

m = |Ru| as solutions to (14) or (15). Since the v-equation
does not necessarily contain all unknowns of the whole system,
sk takes arbitrary non-negative values for k ∈ Ru\(R+

v ∪R−v ).
Construct the following set of solutions to v-equation.

Hv =
{
s =

∑
k∈Rv

λkh
(k) | h(k) ∈ Hvk, λk ≥ 1

}
. (17)

A solution s to (14) is v-effective rank if and only if s ∈ Hv .
Any v-effective rank contains one h(k) ∈ Hvk, i.e., atomic
contribution of k. Every resource k always “influences” to the
rank with a level λk, where λk ≥ 1 is a lower bound. Each
v-family in (16) defines the set of all atomic contributions—a
subset of the general solution to the v-equation.

2) Reduction to Linear Programming: To construct a v-
effective rank one must select exactly one h(k) among many
candidates in Hvk for each k. Any v-effective rank s ∈ Hv is
a solution to the linear system

∑
i∈R+

v

αvisi =
∑
j∈R−

v

βvjsj ,

sk ≥ 1, k ∈ R+
v ∪R−v .

(18)

The converse is not true. The accuracy is within multiplica-
tion to a constant: there exists a v-efficient rank s′′ = Cs′ for
any solution s′ to (18) and a constant C ≥ 1. Consequently,
there is no difference whether to use s′ or s′′ when computing
the normalized rank.

A rank is effective if it is v-effective for all v ∈ Nu.
The set of all effective ranks is H ⊆

⋂
v∈Nu

Hv . They are
among solutions to (15). A linear programming problem can
formulated to find the best effective rank in H.

Depending on specifics of the resource sharing problem
some ranks account u’s interests better. We can bound si since
if (18) is solvable then there are solutions with arbitrary high
sk. Note that normalization preserves the proportions despite
of how high the absolute values are. The following generic
linear cost function provides the bound if c > 0:∑

k∈R

cksk → min . (19)

The weights ck allow additional problem-aware resource dif-
ferention; the higher ck the lower sk.

From the point of view of market pricing, if many nodes
provide resource i ∈ R+ then its rank decreases. If many
nodes consume resource j ∈ R− then its rank increases.
Hence, let ci count all nodes v ∈ Nu such that i ∈ R+

v and
let cj count all v such that j ∈ R−v . These counters appear
implicitly in node ranks from (13), i.e.,∑

v∈Nu

r+
v =

∑
v∈Nu

∑
i∈R+

v

si =
∑
i∈R

cisi,

∑
v∈Nu

r−v =
∑
v∈Nu

∑
j∈R−

v

sj =
∑
j∈R

cjsj .

Table IV shows possible linear cost minimization criteria.
Criterion (C+P) states a tradeoff since neighbor consump-
tion and provision ranks are bounded equally. Criteria (C-P)
and (P-C) state thresholds of moving toward the respectable
and selfish direction, correspondingly. Obviously, they can lead
to an unbounded optimization problem.

This ranking model allows a generic function f(r+
v , r

−
v ) that

specifies the relation between r+
v and r−v . For instance, u can

prioritize nodes v ∈ Nu using mutual trust among them and
use quadratic cost functions∑

v∈Nu

cv(r
+
v − r−v )2 → min .

Instead of the use of homogenous linear constraints one can
consider the equivalent linear programming problem:

f =
∑
k∈Ru

dkσk → min∑
k∈Rv

dvkσk = −dv, v ∈ Nu,

σk ≥ 0 ∀k ∈ Ru.

(20)
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Any feasible solution σ to (20) yields a solution s = σ + 1
to (15) and vise versa. The cost function f prioritizes resources
by their surplus—resources with high dk will be of low rank.

The dual problem to (20) is
φ =

∑
v∈Nu

dvρv → min∑
v∈Nu

dvkρv ≤ dk, k ∈ Ru.
(21)

(The dual variables −ρv take any real value.) According to the
duality, ρv = ∂f

∂dv
, i.e., ρv arranges nodes by their influence

to the resource-aware cost. Consequently, they can be used to
compute node ranks, alternatively to (13).

V. GLOBAL MODELS

Global models are limited to high-level characteristics,
which can be determined before the system installation or
are relatively stable allowing inexpensive computation run-
time. This section considers models that support architectural
solutions (structure and resultant performance) and fair coop-
eration (global reputation).

A. Hierarchical Architectures

Kleinberg [30] considered three conceptual models for
decentralized networks: grids, hierarchies, and set systems.
It forms a general framework for hierarchical multi-layer
architectures for P2P systems [4].

1) Cluster-based Model: P2P clusters are a result of clas-
sification. Close nodes become densely connected and form a
discrete entity—the cluster with explicit space bounds. Within
a cluster each node can reach another in few hops. A global
structure of tightly interconnected groups appears, forming a
two-layer hierarchy. In intra-cluster communication the routing
distance τ is shorter than in inter-cluster communication.

This model defines a hierarchy as a set of n interconnected
clusters. It embeds the network such that its network topology
ensures the following routing distance property:

({Cs}ns=1, τ) ,
τ(u, v)� τ(u,w) for u, v ∈ C, w ∈ C′, C 6= C′. (22)

Each particular model defines its variant of the relation “�”.

TABLE IV
LINEAR OPTIMIZATION CRITERIA

Ref. Cost Interpretation
(C)

∑
v∈Nu

r+v Higher priority in u’s consumption to rare
resources since few nodes provides them.

(P)
∑

v∈Nu

r−v Higher priority in u’s provision to neigh-
bors consuming resources of small variety.

(C+P)
∑

v∈Nu

(r+v +r−v ) A trade-off in u’s consumption/provision.

(C–P)
∑

v∈Nu

(r+v −r−v ) A respectability threshold in u’s consump-
tion/provision: u minimizes its consump-
tion and maximizes its provision.

(P–C)
∑

v∈Nu

(r−v −r+v ) A selfishness threshold in u’s consump-
tion/provision: u minimizes its provision
and maximizes its consumption.

A simple formal construction is a set of balls in the ID
space S, e.g., in grid. There is a set of landmarks {cs}ns=1;
they are points or dedicated nodes in S. Cluster Cs consists
of all nodes u that satisfy ρ(cs, u) ≤ R for a given radius R.

2) Tree-based model: A given hierarchy in S with two
or more layers induces the space distance ρ in terms of the
hierarchy tree. The hierarchy embeds the network, forming the
hierarchy-aware network topology with the resultant routing
distance τ . An obvious example is location and administrative
hierarchies: nodes are categorized on lowest-level groups
depending on which local area network they belong to, the
upper level groups are defined in accordance with their scale,
e.g., city, region, and state.

A formal construction is based on a complete b-ary tree T =
T (b,N) with N leaves (hence T is of height M = logbN ).
For leaves u and v the hierarchy-induced distance h(u, v) is
the height of their lowest common ancestor in T . Then a
network of N nodes is constructed such that the probability
of establishing a link u→ v is proportional to b−αh(u,v) for a
model parameter α ≥ 0. As in the cluster-based model, shorter
paths exist between nodes of the same group.

In general, an arbitrary tree T defines a hierarchy where N
leaves correspond to nodes. Other vertices are groups con-
sisting of descendant groups and nodes. The distance metric
is the tree distance. The hierarchy is M -layer. The bottom
layer i = 1 consists of N nodes. On upper layer i + 1 each
group consists of all nodes from its descendant groups on
the layer i. Groups of the same layer are node disjointed.
On each layer the inter-group connectivity is sparser than the
intra-group connectivity.

3) Group-based model: Assume that each node may be-
long to several groups. For example, a node u can belong
to group C1 (Petrozavodsk State University—administrative
entity), group C2 (powerful machines—performance level) and
group C3 (Russia—geographical area). As in the cluster- and
tree-based models, nodes are more likely to be connected if
they belong to the same group.

The following properties using parameters 0 < λ < 1 and
1 < µ are established for formal construction.

(i) The full set N of all nodes is a group.
(ii) If C is a group of size |C| ≥ 2 and u ∈ C, then there

is a group C′ ⊂ C such that

C′ 6= C, u ∈ C′, λ|C| ≤ |C′| < |C|.

(iii) For any set of groups {Ci} with a common node u,∣∣⋃
i

Ci
∣∣ ≤ µσ, where σ = max

i
|Ci|.

Property (i) ensures that for any subset of nodes there is a
group such that it includes the whole subset. Property (ii) is
a type of the “hierarchy balance” requirement when a group
consists of subgroups of proportional size. For example, the
tree-based model with a complete b-ary tree defines groups of
b node-disjoint subgroups each, hence λ ∼ 1/b. Property (iii)
is a type of “bounded size growth” requirement; if groups
has a common node then they are close in certain sense, so
they cannot contain many distinct nodes. For example, the
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cluster-based model forms node-disjoint groups, hence a set
in property (iii) always consists of one group.

For two nodes u and v, the induced space distance ρ(u, v)
is the minimum size of a group containing both u and v.
Similarly to the previous models, it allows embedding the
network into the hierarchy such that the connectivity struc-
ture positively correlates the routing distance τ with ρ. For
instance, one can use the probability of establishing a link
u→ v proportional to [ρ(u, v)]−α for α ≥ 0.

Properties (ii) and (iii) results in two dimensions in hier-
archy: vertical and horizontal. The vertical dimension defines
layers and rules for nesting groups. Any hierarchy contains at
least one chain of nested groups for any node u:

u ∈ C1 ⊂ C2 ⊂ . . . ⊂ Cm = N, (23)

where each Ci belongs to a distinct layer and there is no C
such that Ci ⊂ C ⊂ Ci+1.

The tree-based model is pure vertical since the only chain
of nested groups exists for a given node. In the general case,
there can be several chains for the same node, e.g., if the
tree-based model uses several trees. The following requirement
preserves the vertical structure “approximately nested”. If {Ci}
are arbitrary groups having a common node and any two of
them do not belong to the same layer then∣∣⋃

i

Ci
∣∣ ≤ µ(max

i
|Ci|), (24)

where µ(·) is a monotone increasing function.
The horizontal dimension defines classification onto groups

on the same layer i.⋃
j

Cij = Ni, |Cij ∩ Cik| � |Cij4Cik| ∀j 6= k, (25)

where 4 is the symmetric difference.
The cluster-based model is pure horizontal; its group dis-

tribution is always a partition of N , thus Cij ∩ Cik = ∅. In
the general case, groups on the same layer may overlap. Re-
quirement (25) preserves groups “low overlapped”. Note that
alternative chains in (23) can appear because of overlapping.

B. Performance

Hierarchical architecture meets the problem of the optimal
number of layers and the optimal population size on each
layer. On one hand, the more layers the more differentiation,
which improves the performance and other characteristics of
the system. On the other hand, a high hierarchy degree can be
expensive. Consider some cost models for this tradeoff: cost of
local and total states (routing table sizes), routing (path length
in overlay hops), and traffic (lookup and maintenance).

1) State Cost in Two-Layer Architectures: The total state
cost is the sum of local state costs over all nodes. Consider a
two-layer architecture with N2 supernodes, each maintains its
own non-overlapping overlay of N/N2 nodes on the bottom
layer. Any supernode has local state of N/N2 +N2−2 entries
due to maintenance of two routing tables of size N/N2 − 1
(all supernode’s nodes) and N2 − 1 (all other supernodes).

Assume the extreme case when every node is ready to be
a supernode (full-redundancy) and every overlay has fully-
meshed topology. Consequently, any node needs to maintain
N/N2 +N2 − 2 entries, and the total state cost is

StateCost(N2) = N

(
N

N2
+N2 − 2

)
. (26)

The only minimum is at N2 =
√
N .

Assume the case with no redundancy. Every node maintains
a routing table of size N/N2 − 1 to participate in its overlay
on the bottom layer. In addition, every supernode maintains a
routing table of size N2 − 1. The total state cost becomes

StateCost(N2) = N2(N2 − 1) +N(N/N2 − 1). (27)

Taking the derivate and equalizing it to zero lead to the
following cubic equation respect to N2:

2N3
2 −N2

2 −N2 = 0.

There exists the only positive real root N2 = Θ(N2/3) for
large N . Although model (27) states that the total state cost
is less than for (26), more supernodes are required (N2/3 �
N1/2 for large N ). The benefit of this node differentiation is
that the local state cost ratio between supernodes and regular
nodes is proportional to N1/3.

Let any overlay in the network be DHT-based with
logarithmic-size routing tables. Similarly to (27),

StateCost(N2) = N2 logN2 +N log(N/N2). (28)

Taking the derivate and equalizing it to zero, one obtains the
following transcendental equation respect to N2:

N2 =
N

1 + lnN2
.

Since lnN2 +1 < N2 for large N2, then N2 ≥ N/N2 and the
upper bound N2 = O(

√
N) is true for the optimal solution.

If we approximate N2 = N1/2−ε with a small ε > 0 then
the local state cost is (1/2 + ε) logN and logN for a regular
node and a supernode, respectively. The local state cost ratio
between supernodes and regular nodes is 2/(1 + 2ε).

2) State Cost in Multi-Layer Architectures: Generalization
to M > 2 is based on induction for the number of layers. Basic
conclusions are as follows. Given N , the optimal number of
layers is M = Θ(logN). Given N and M , the optimal number
of supernodes on the top layer is NM = Θ(N1/M ).

Let N1 = N and NM+1 = 1 in M -layer architecture. The
total state cost is given by

StateCost =

M∑
i=1

Niδi for fixed M, (29)

where Ni is the number of nodes on layer i and δi is
the routing table size in any layer-i overlay. When δi =
Ni/Ni+1 − 1 and δi = log(Ni/Ni+1) we generalize (27)
and (28), respectively.

Moving from M -layer architecture to (M + 1)-layer one,
both Ni and δi are changed because of node redistribution
among layers. The redistribution essentially depends on the
clustering algorithm: nodes on layer i form groups and elect
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TABLE V
ASYMPTOTES OF THE TOTAL STATE COST IN P2P ARCHITECTURES.

Architecture Total state cost as big-O asymptote
Flat logarithmic DHT N logN
Flat fully-meshed N(N − 1)

M = 2, full-redundancy,
fully-meshed, see (26)

2N(
√
N − 1)

M = 2, non-redundant,
fully-meshed, see (27)

N
(

2N1/3 − 1−N−1/3
)

M = 2, logarithmic DHTs,
see (28)

N +
√
N

2
logN

M = Θ(logN), fully-meshed N logN

their representatives for layer i + 1. Layers i = 1, 2, . . . ,M
become less populated (Ni is reduced) and overlays on these
layers become smaller (δi is reduced). It decreases the total
state cost. On the other hand, the new top layer M + 1 leads
to higher state cost for NM nodes. The compensation of these
two terms determines decrement or increment of the total cost.

In fully-meshed topology, increasing M up to logN reduces
the cost to Θ(N logN). Further increasing does not provide
better result than (26). In logarithmic DHT, any flat N -node
DHT network already has the Θ(N logN) total state cost,
and increasing M is not essential for the cost improvement.
Table V summarizes the asymptotic cost behavior for large N .

3) Routing cost: Consider the routing cost model for the
optimal value of N2 in two-layer CAN-based architecture [47].
Let d be the CAN ID space dimension. Starting from a regular
node, the number of hops needed to find the destination cluster
supernode on the top layer (a CAN overlay of N2 nodes) is
1+dN

1/d
2 on average [16]. Then d(N/N2)1/d hops are needed

on average to find the responsible node on the bottom layer
(a CAN overlay of N/N2 nodes). In total, the routing cost in
overlay hops is

RoutingCost = f(N2) = 1 + dN
1/d
2 + d

(
N

N2

)1/d

.

The minimum is when N2 =
√
N , independently on d. Fixing

N2 =
√
N the routing cost is minimal for d = lnN2. It is

twice lower than the optimal dflat = lnN = lnN2
2 = 2 lnN2

in a flat CAN network. Consequently, a regular node has twice
lower local state. A supernode has the same state as in a flat
CAN network due to maintenance of two routing tables, each
has d entries (d+ d = dflat). The optimal case is

RoutingCost = 1 +N1/ lnN lnN,

which is one hop greater than the optimal routing cost in a
flat CAN network with N nodes and dflat = lnN .

Applying the same technique for a flat DHT network with
O(logN) routing,

RoutingCost = 1 + logN2 + log
N

N2
= 1 + logN,

and the routing performance again is almost equal for hierar-
chical and flat designs.

C. Reputation Systems

Nodes can utilize all direct observations from neighbors and
aggregate indirect observations from the rest of the system.
This approach is used in reputation systems, which require dis-
tributed learning-propagation algorithms to aggregate results
of concurrent nodes [38], [39].

1) Market Pricing: Game theory focuses on P2P exchange
economies [25], [37], [40], [41] with system-wide indexes like
the overall node reputation metric or global resource prices. It
results in models with the intuition and properties from classic
monetary-based economies. If a node knows the index then
the node can rationally select its participation strategy. The
system converges to an equilibrium point, e.g., when there
is no node that can improve its utility by deviating from the
optimal strategy (Nash equilibrium).

The game-theoretic models are mostly based on defining
node utility functions U(a(u), b(u)), where consumption a(u)
and provision b(u) define u’s strategy. The sum of these
utilities is the social welfare to be maximized. Less attention
is given to constraints that define feasible strategies. The
constraints typically reflect node capacity bounds only.

Aperjis et al. [25] considered the bilateral exchange balance
where nodes charge each other for resources in a com-
mon monetary unit with settlement-free transactions. Node u
charges node v a price puv > 0 per unit rate. Then u has one
exchange balance constraint for each neighbor v,

pvu
∑
k∈R+

u

avk(u) = puv
∑
k∈R−

u

bvk(u), v ∈ Nu,

where avk(u) = buk(v) is the rate at which u downloads
resource k from v (or the rate at which v uploads k to u).

In multilateral exchange, the system globally maintains one
price per node. Let pv > 0 be the price of node v. Then the
balance is a single exchange constraint,∑

v∈Nu

pv
∑
k∈R+

u

avk(u) = pu
∑
v∈Nu

∑
k∈R−

u

bvk(u).

The model of one price per resource pk > 0 defines the
exchange constraint∑

v∈Nu

∑
k∈R+

u

avk(u)pk ≤
∑
v∈Nu

∑
k∈R−

u

bvk(u)pk,

which provides an aggregated view.
These game-theoretic models are focused on characterizing

global equilibrium qualitatively, e.g., the existence of a point
(a, b, p) such that maximizes the utility of each node u subject
to its exchange balance constraints. Their runtime application
requires a system-wide mechanism to collect model input
parameters a and b, evaluate prices p, and distribute results
among participants.

2) PageRank and EigenTrust: As in the web information
retrieval [31], structural properties of the P2P network topol-
ogy are an essential factor for ranking. Such known graph-
based algorithms as PageRank and EigenTrust can be used for
computing rank values if the global topology is known. They
are an uttermost form of indirect reciprocity: all paths exited
between nodes are analyzed. Let us consider the mathematical
models behind these algorithms.
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The basic idea of PageRank is that a link from a node to
another states an endorsement of the latter node, indicating its
quality. Analyzing the global link structure one can rank nodes
according to their perceived quality. Consider the following
random walk in a graph of N nodes. At each step either
with probability α a node u selects a link u → v to follow
uniformly among available v ∈ Tu or with 1 − α jumps to
a random node among N − 1. Jumping prevents permanent
confinement in a strongly connected component of the graph.
The parameter α is the damping factor—the probability of
following the link structure. The probability the random walk
is in node u is the PageRank value

pu = α
∑

v:u∈Nv

pv
Nv

+
1− α
N − 1

. (30)

The sum is over all v such that u ∈ Nv . If the walk is at some
v then 1/Nv is the uniform probability of selecting v → u
and thus the walk returns to u.

The rank pu is divided among u’s forward links u→ v for
v ∈ Nu evenly to contribute to the ranks pv of the nodes they
point to. A node u has high pu if the sum of the ranks of its
ingoing links v → u is high. Either u has many ingoing links
or u has a few highly ranked ingoing links.

Instead a random jump in (30), a personalization vector π
of damping factors can be used. Each πu ≥ 0 represents the
likelihood of jumping to u. This modification is personalized
PageRank. Another non-uniform modification is weighted
PageRank when forward links have probabilities relative to
the link weights. Let buv > 0 be the weight of a link u → v
and puv be the probability of selection of u→ v, then

puv = buv /
∑
w∈Nu

buw.

PageRank with these two modifications can be computed
iteratively starting from some initial values p(0)

u :

p(i+1)
u = α

∑
v:u∈Nv

pvup
(i)
v + (1− α)πu. (31)

A link u → v of P2P topology can also be considered as
indication of the quality of v for u. PageRank computed over
the global topology graph has the following interpretation. If
pu is high then u is a neighbor of many other nodes or a
neighbor of a few highly ranked nodes. This interpretation is
useful for route and neighbor selection problems; each node
u prefers those neighbors that have high rank.

EigenTrust [32] is designed for reputation management.
It computes a trust score (rank pv or reputation value) that
indicates how likely a node v ∈ N is to be malicious. The
system evolution is divided into rounds i = 1, 2, . . . in which
nodes interact by making queries and consuming resources.
At the end of round i, the record of correct and incorrect
consumptions is used to calculate the trust values pu(i+ 1).

A node u rates each transaction with its neighbor v ∈ Nu.
In original EigenTrust, a transaction is rated as positive (1)
or negative (−1), which is a common way in rate-based
schemes [48]. Then a local trust value duv is defined, e.g., as
the sum of the ratings of the individual transactions that node
u has performed from node v. Original EigenTrust computes

duv as the difference between the sum of positive transactions
and the sum of negative transactions. The local trust values
are normalized; let D be the normalized matrix.

EigenTrust aggregates local trust values using the notion of
transitive trust: a node u will have a high opinion of those
nodes who have provided it resources well. A node u is likely
to trust the opinions of those nodes, since nodes who are
generous about the resources they provide are also likely to
be correct in reporting their local trust values.

EigenTrust global trust value is defined iteratively,

p(j+1)
u = (1− ε)

∑
v∈N

Dvup
(j)
v + εtu, (32)

where 0 ≤ ε < 1 is a constant and t = (tv)v∈N is
a probability distribution over pre-trusted nodes. Pre-trusted
nodes are essential, as they guarantee convergence and break
up malicious collectives. In the simplest case, tu = 1/N . The
iterations j = 0, 1, . . . start with some initial vector p(0) and
stop when |p(j+1)

u − p(j)
u | is made small enough.

The definition is similar to PageRank iterations (31) with
damping factor α = 1 − ε and personalization vector π = t.
The same interpretation is applicable. If a random surfer was
searching for reputable nodes it can crawl the network using
the following rule: at each node u, it will crawl to node v with
probability Duv . After crawling for a while in this manner, the
surfer is more likely to be at reputable nodes than unreputable
ones. The stationary distribution of the Markov chain is the
global trust (reputation) vector p = (pu)u∈N .

VI. CONCLUSION

The article proposed to consider mathematical models for
large-scale P2P systems from two extreme views: local and
global. The former is modest in terms of amount and quality
of input information. The latter utilizes the overall knowledge
about the system. The presented selection of models showed
that both classes are important for P2P systems. Effective
solutions for the large scale case are possible when the
implementation takes into account what input information can
be achieved, where it is processed using given models, and
how the result is made available for nodes making control
decisions.
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